

Por que devemos filtrar? Para remover elementos estranhos ao meio, exemplos:

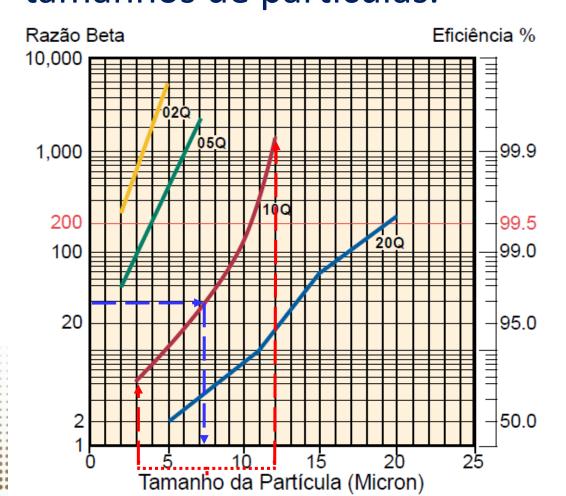
- a. Água
- b. Particulado sólido
 - a. Proveniente do meio ambiente
 - a. sílica
 - b. Gerado no próprio sistema
 - a. Desgaste: ferrosos e não ferrosos

Remoção de Água:

Não é possível por filtração, apenas por SEPARAÇÃO, se:

em excesso \rightarrow água livre: centrifugação e desidratação à vácuo.

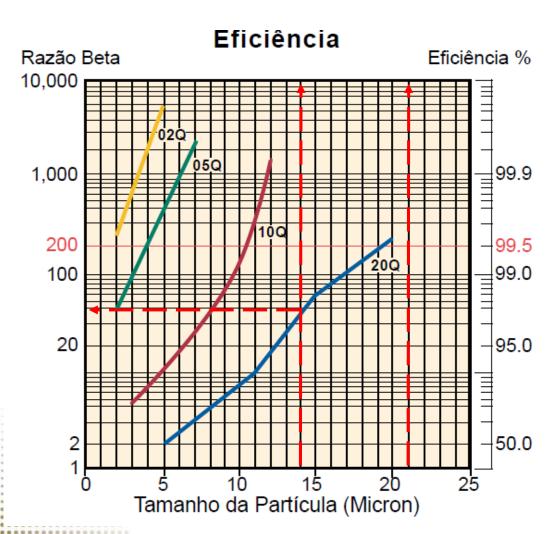
em pouca quantidade > água dissolvida: desidratação à vácuo.


Particulado sólido SEPARAÇÃO e FILTRAÇÃO

Quantidade	Tamanho	Ação	Processo
Excedente	> 21µm	Pre separação +	Centrifugação +
		Pre filtragem	Filtro Nominal
NAS 12	14 - 21μm	Pre filtragem Nominal + Filtragem Absoluta	nominal → NAS 9 + β20=75 → NAS 7 β10=200 → NAS 5
	4 - 6μm 	Pre filtragem β10=75 + Filtragem Absoluta	β5=75 → NAS 7 + β5=200 → NAS 5

Comportamento dos Filtros

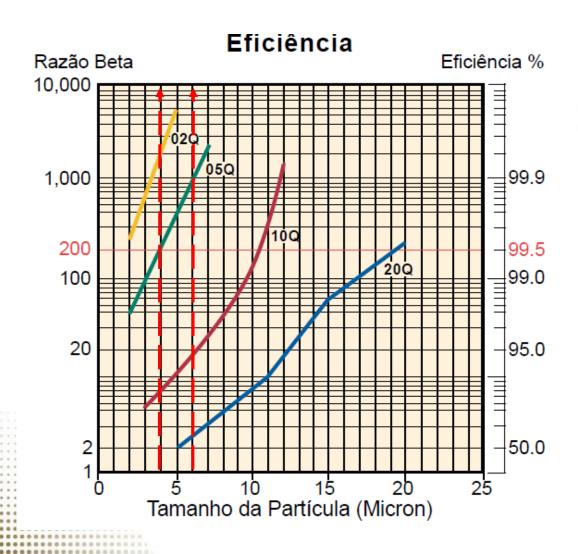
O meio filtrante, em função de suas características de fabricação, são adequados apenas para determinados tamanhos de partículas.



Por exemplo, o meio filtrante 10Q, mostrado no gráfico ao lado, somente para partículas de 3 a 12 μ m.

Grande probabilidade de bloquear com partículas maiores que 12µm e baixa eficiência para partículas menores que 7µm.

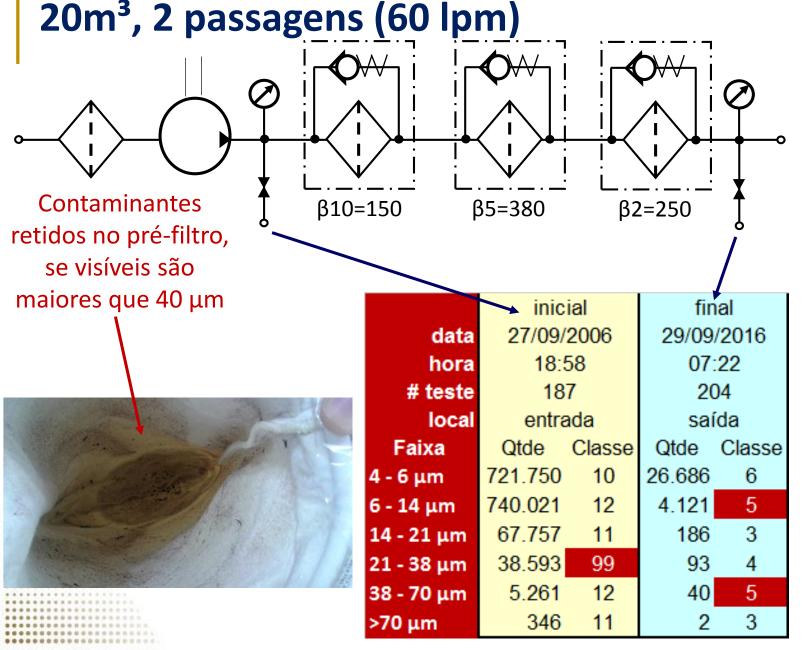
Exemplo 1: contagem de partículas de 14 - 21 μ m \rightarrow NAS12 = 222.000 partículas

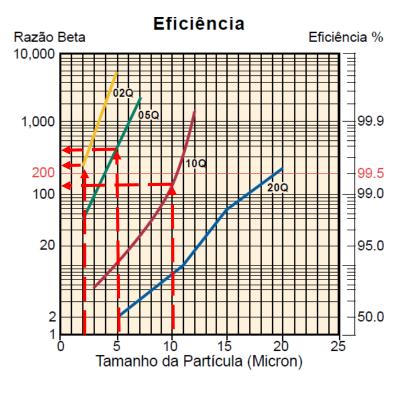

Para se verificar a eficiência de remoção, recomendamos usar as menores partículas como referencia

222.000 / 40 = 5.550

Elemento	β14 =	Resultado
02Q	7	
05Q	7	Provável bloqueio do filtro
10Q	7	do Ilitro
20Q	40	5.550 -> NAS 7

Exemplo 2: contagem de partículas de 4 - $6\mu m \rightarrow NAS$ 12 = 3.200.000 partículas


3.200.000 / 1.100 = 2.909


Elemento	β4 =	Resultado			
02Q	1.100	2.909 -> NAS 2			
05Q	200	16.000 -> NAS 5			
10Q	Não retém				

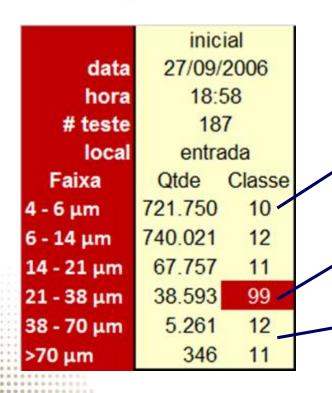
3.200.000 / 200 = 16.000

Teste realizado em uma de nossas carretas:

Ideal: contagem de partículas \rightarrow óleo sem umidade

	inicial				
data	27/09/2006				
hora	18:	58			
# teste	187				
local	entrada				
Faixa	Qtde Class				
4 - 6 μm	721.750	10			
6 - 14 μm	740.021 12				
14 - 21 μm	67.757	11			
21 - 38 μm	38.593	99			
38 - 70 μm	5.261	12			
>70 μm	346 11				

Classe	Quantidade de partículas em 100 ml							
Classe	4 - 6 μm	6 - 14 μm	14 - 21 μm 21 - 38 μn 38 - 70 μm >70 μ					
000	195	76	14	3	1	0		
00	390	152	27	5	1	0		
0	780	304	54	10	2	0		
1	1.560	609	109	20	4	1		
2	3.120	1.220	217	39	7	1		
3	6.250	2.430	432	76	13	2		
4	12.500	4.860	864	132	26	4		
5	25.000	9.730	1.730	306	52	8		
6	50.000	19.500	3.460	612	106	16		
7	100.000	38.900	6.920	1.220	212	32		
8	200.000	77.900	13.900	2.450	424	64		
9	400,000	156.000	27.700	4.900	848	128		
10	800.000	311.000	55.400	9.800	1.700	256		
11	1.600.000	62 300	111.000	19.600	3.390	512		
12	3.200.000	1.250.000	222.000	39.200	6.780	1.024		


Proposta para modificação da NAS 1638, equivale à SAE 4059, tabela 1

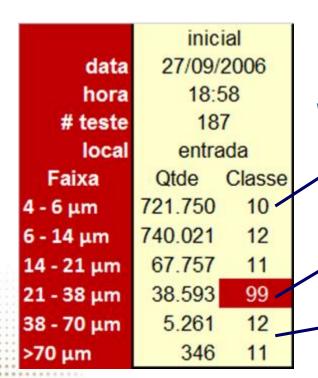
(já empregada em contadores e partículas UCC)

Ideal: contagem de partículas →óleo sem umidade definir NAS desejado → tabela de equipamentos

Exemplo: transmissão hidrostática de colhedora de cana:

Partículas pequenas, não serão retidas por elementos filtrantes de 10 e 5µm absolutos!

Partículas grandes podem bloquear elementos filtrantes de 10 e 5µm absolutos!


Partículas excessivamente grandes necessária pré-filtração nominal!

Ideal: contagem de partículas →óleo sem umidade definir NAS desejado → tabela de equipamentos

Exemplo: transmissão hidrostática de colhedora de

NAS 5

Solução:

Filtros em série

Filtros em série

Proteger retirar partículas

Nominal para proteger retirar partículas

excessivamente grandes;

excessivamente grandes,

10μm e 5μm

excessivamente 20μm, 10μm e 5μm

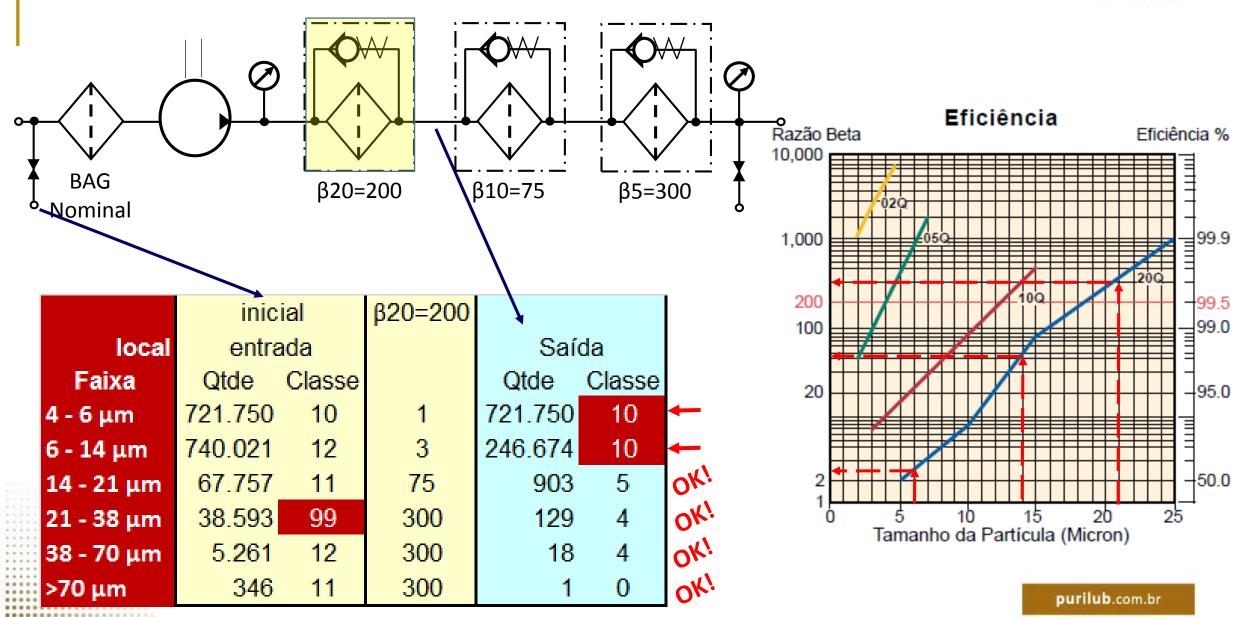
excessivamente 20μm, 10μm e 5μm

excessivamentos podem danificar

bombas, rolamentos,...!

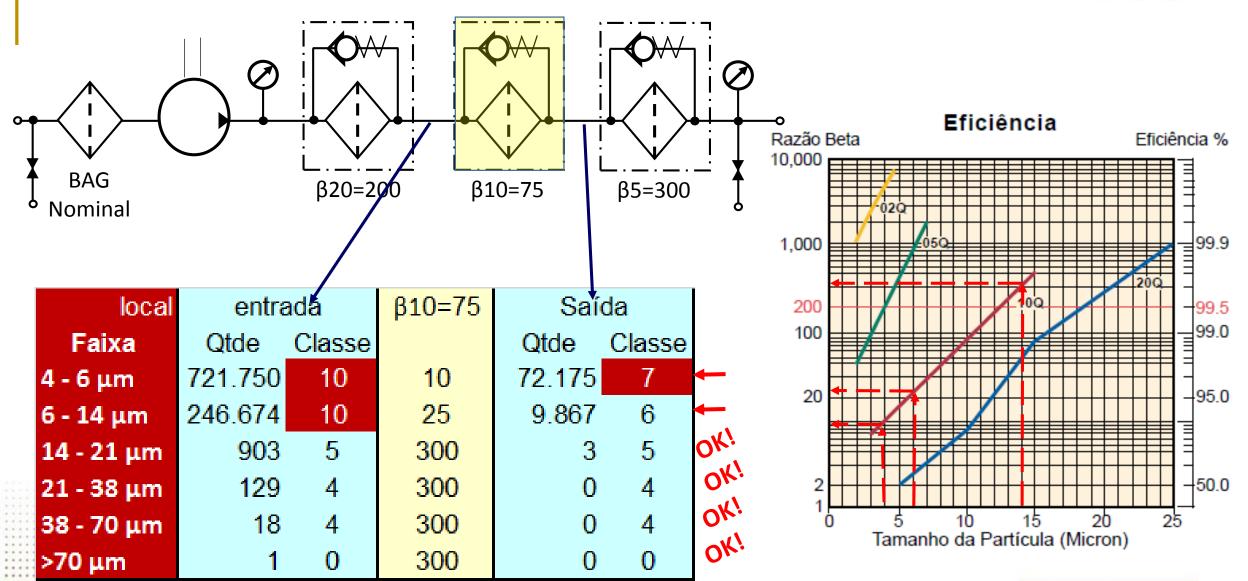
Ideal: contagem de partículas →óleo sem umidade definir NAS desejado → tabela de equipamentos

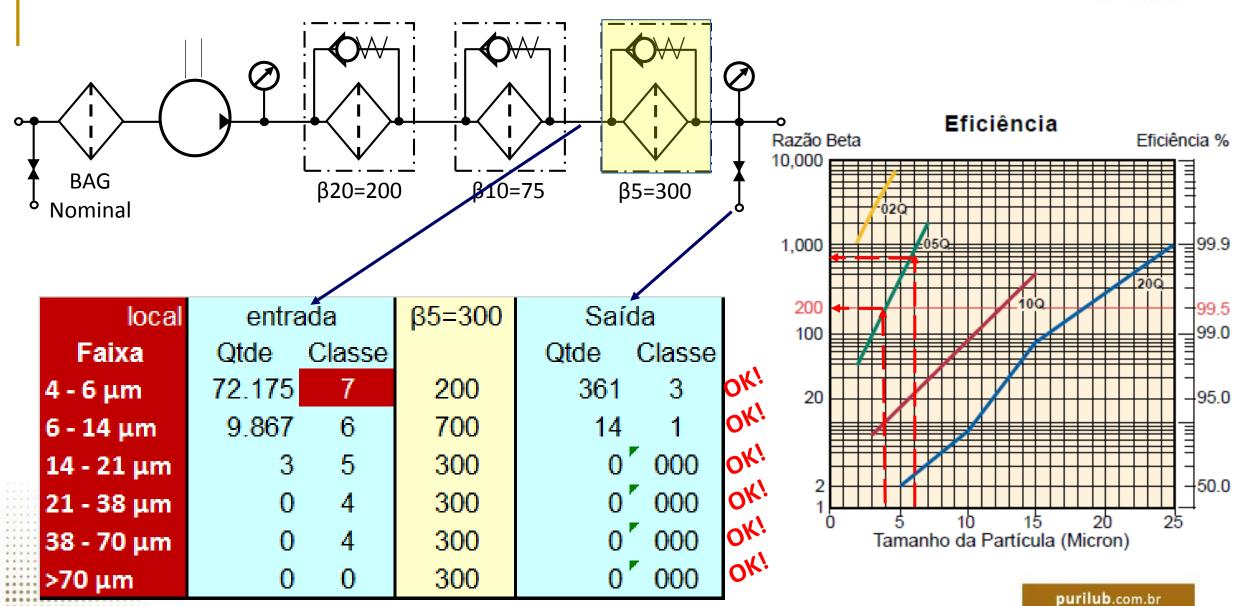
Exemplo: transmissão hidrostática de colhedora de cana: NAS 5



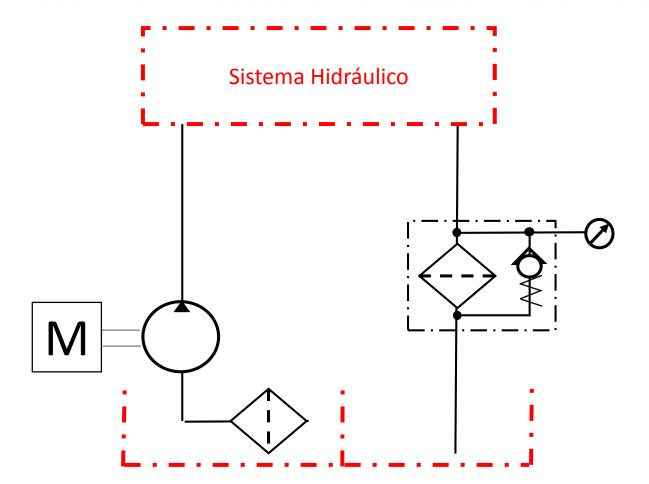
Óleo HIDRÁULICO					
Componente	Pressão	NAS	Proposta	Posição do Filtro	
Bombas de Pistões de Vazão Variável	70 bar	8	β5>300	Pressão OU Retorno.	
			β10>150	Pressão E Retorno.	
	70 – 210 bar	7	β5>300	Pressão OU Retorno E <i>Off Line.</i>	
	/		β10>150	Pressão E Retorno E Off Line.	
		6	β2>200	Pressão OU Retorno.	
	> 210 bar		β5>300	Pressão E Off line.	

.com.br

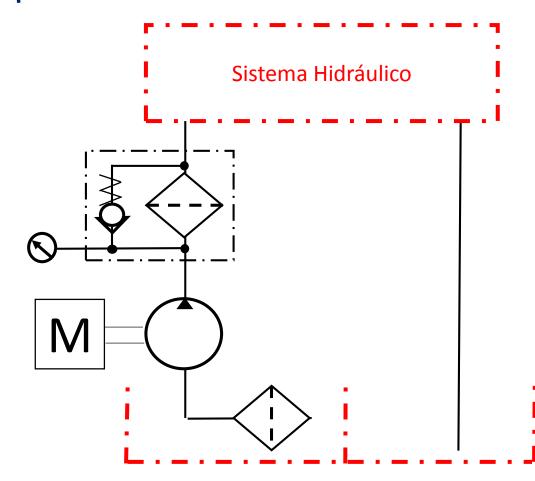

Objetivo NAS 5


Objetivo NAS 5

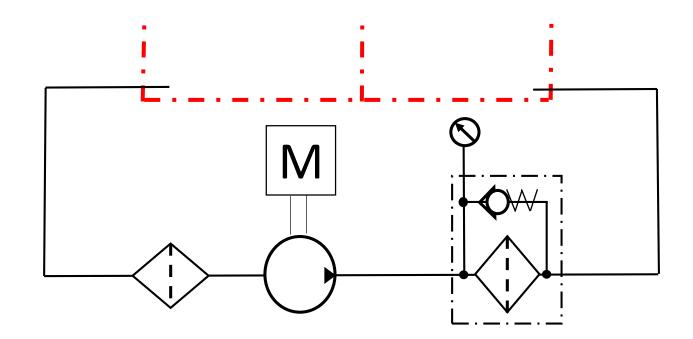
Objetivo NAS 5


purilub.com.br

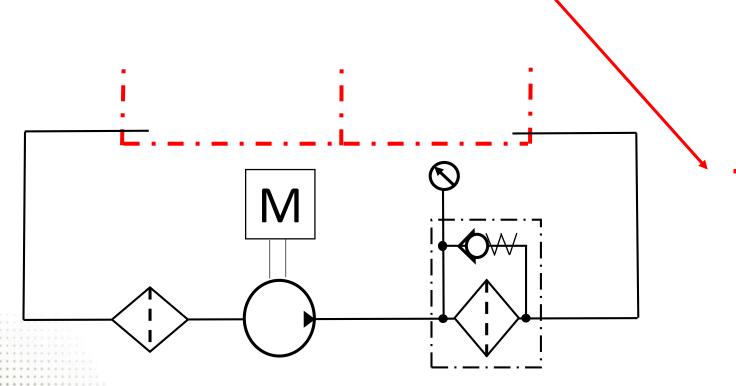
Qual a dimensão (tamanho) do filtro?


Linha de retorno

calcular a vazão máxima de retorno


Qual a dimensão (tamanho) do filtro? Linha de pressão → vazão da bomba

Qual a dimensão (tamanho) do filtro?


Off line (circuito fechado) → ?

Qual a dimensão (tamanho) do filtro?

Off line (circuito fechado) →?

Regra de ouro:

- 1. Verificar o volume do reservatório;
- 2. Considerar filtrar o volume total do reservatório 3 vezes ao dia (8 horas)
- → "bom senso"

(objetiva-se vazões menores que 30lpm)

Qual o teor de sujeira no óleo?

Volume	NAS 11	NAS 10	NAS 9	NAS 7	NAS 5
3.750 l	1.266 g	633 g	316 g	80 g	20 g
1.000 l	338 g	169 g	84 g	21 g	5 g
200 l	68 g	34 g	17 g	4 g	1 g

Dados da UCC (Parker) Considera contaminante padrão, variará com a densidade do contaminante

CONCLUSÃO

Apresentamos neste trabalho o comportamento teórico de filtros, nossa experiência como prestadores de serviços de filtração aponta para a necessidade de se circular o lubrificante de duas a três vezes pelos filtros para se obter o resultado desejado. Nossas conclusões devem-se ao fato de os poros dos meios filtrantes não serem homogêneos e de a distribuição dos contaminantes no meio liquido também não o ser. Lembre-se, estamos falando de uma quantidade de contaminantes muito pequena, 68g de contaminantes em 200 litros para NAS 11 e apenas 1g de contaminantes para NAS 5.

Todos os gráficos de eficiência, utilizados neste trabalho, foram obtidos em internet em catálogos de fabricantes idôneos. Tratamse de valores de referência, não tem valor científico.

Todos os cálculos e suposições são de responsabilidade da Purilub.